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ABSTRACT

Within the context of statistical homogeneity, we examine geostrophic turbulence, employing a simple,
eddy-damped closure. We find for decaying turbulence that high wavenumbers tend toward three-dimen-
sional isotropy, as predicted by Charney, but wavenumbers smaller than the energy peak tend toward an
approximate two-dimensional state, with the crossover wavenumber near the peak energy wavenumber.
The high-wavenumber energy spectrum is found to be log-modified k=2, where £ is the three-dimensional
wavenumber. Analytic information for the isotropization rate at small scales as well as for the large-scale
‘‘barotropization’’ is proposed. Finally, we describe the relation of these results to the more familiar

layered approximations of the equations of motion.

1. Introduction

In his 1971 paper on geostrophic turbulence,
Charney argued that the dynamics of quasi-geo-
strophic flow (neglecting boundaries) lead—at small
scales—to homogeneous and isotropic statistics
for both the energy and temperature variance.
He further produced general arguments—based on
the familiar conservation laws for energy and
enstrophy for inviscid flow—that the isotropic
energy inertial range would be k=3, where k is the
three-dimensional wavenumber.

Charney’s results at first glance appear somewhat
paradoxical. Consider, for example, the case of
stratified flow with spacial homogeneity. Then the
equations of motion simply state that the quasi-
geostrophic potential vorticity is convected in
horizontal planes. The question then arises, how
can these patently anisotropic dynamics result in
isotropic statistics for spectra?

Some insight into this issue may be obtained if we
consider homogeneous inviscid flow supported by a
finite wavenumber band and ask for the absolute
equilibrium statistics. If this is done, we find the
usual energy spectrum E(k) = k%*(a + bk?), where
{(a,b) are constants related to the total energy and
(quasi-geostrophic) enstrophy (Kraichnan, 1967).
Note, however, that for the present problem k is a
three-dimensional rather than a two-dimensional
vector and, consequently, E(k) is three-dimensionally
isotropic. The physical interpretation of the isotropy
in this case is traceable to a tendency of the flow to
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equilibrate two-thirds the kinetic and one-third the
potential energy. We have not touched on the stabil-
ity of the three-dimensional absolute equilibrium
solution.

The quasi-geostrophic equations also admit strictly
two-dimensional solutions whose inviscid equiparti-
tion form is k/(a + bk?). These solutions are an ex-
treme form of anisotropy, and purely thermodynamic
reasoning rules them out since their entropy is
smaller than the three-dimensional case. Also, such
strictly two-dimensional solutions are unstable to
three-dimensional perturbations, as has already
been demonstrated by Jacobs and Wiin-Nielsen
(1966).

For real flows with dissipation, equipartition ideas
are only suggestive, and more dynamical arguments
must be advanced to treat the issue of isotropizing
of quasi-geostrophic flow. In the present paper, we
investigate this problem by means of the statistical
theory of turbulence, employing a simplified version
of the test field model (TFM) (Kraichnan, 1971)
which is equivalent to the eddy-damped quasi-
normal approximation (Orszag, 1974). We note inci-
dentally that for inviscid flow the TFM satisfies an H
theorem (Carnavale et al., 1980), which implies that
for the present problem the three-dimensional iso-
tropic state—mentioned earlier—is monotonically
approached. The entropy in this case is the logarithm
of the model energy spectrum.

Our motive here is not only to examine the issue
of high-wavenumber isotropy, but to discover how
much of the observed dynamics of quasi-geostrophic
flow can be comprehended in the context of homoge-
neous flow. What we observe is that both large-scale
barotropization and small-scale isotropization are
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reproduced correctly by the homogeneous version
of the theory. We recall that both these effects have
been observed in the numerical simulations of
Rhines (1977) and others [see Rhines (1979) for a
summary of other work] who use vertically layered
approximations to the equations of motion. Our use
of the term ‘‘barotropic’’ here means strictly two-
dimensional, rather than quasi-two-dimensional, as
would be implied by near isotropy in the stretched

coordinate frame. It is hoped that the present con-

tinuously stratified, statistical treatment yields in-
sights which complement the above-cited calcula-
tions. The theory permits a calculation of rates of
large-scale barotropization and small-scale iso-
‘tropization.

With regard to the issue of the isotropization of
homogeneous flow, our results are complex. Thus,
as noted above, solutions to initial value problems
typically show a development of a barotropic region
at scales larger than the peak energy wavenumber,
a baroclinic range of scales near the energy peak,
followed by an inertial range at progressively smaller
scales. The inertial range does become more iso-
tropic as k increases, but only very gradually (ap-
proximately logarithmically).

The resulting flow may be characterized roughly
by saying that scales larger than the energy peak
are barotropic, while scales smaller than the energy
peak are three-dimensionally isotropic. For self-
similar decay, the critical dividing wavenumber
decreases—with the energy peak wavenumber—
as time increases., In terms of our earlier thermo-
dynamic discussion, three-dimensional isotropy is
achieved by the passing of this critical wavenumber
into the origin.

The present paper treats only statistically homo-

geneous flow. Here this restriction is much more
limiting than in the Navier-Stokes equations, whose
dynamics imply that in the absence of boundaries the
flow becomes eventually three-dimensionally homo-
geneous even if the ensemble of initial data is not.
There is nothing in the quasi-geostrophic equations
which enforces vertical homogeneity, although an
.initially homogeneous ensemble is self-propagating.
Thus, our calculation can only give insight into those
initial value problems which approximate vertical
homogeneity.

2. Statistical theory of quasi-geostrophic turbulence

a. Equations of motion and kinematics

As noted in the Introduction, we confine our
attention here to homogeneous flows, ignoring
boundaries and other complications such as topog-
raphy and the beta effect. The equations of motion
are

(8/9t + u- V)V = _0. (2.1)
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Here, V2 is the three-dimensional Laplacian [in
stretched z coordinates, z — z(N/f), where f is the
Coriolis parameter, N the Brunt-Viisili frequency
assumed constant here] and u is the horizontal
velocity field, derived from the streamfunction ¢ by

(u,0) = (=¢y, ¥2) = .
We denote the covariance of the potential vorticity,
~V& = {, by
dx,x',1) = dx — x', 1) = ({&X,NLK',1))-
We shall heed vertical correlation lengths for a given

horizontal wavenumber K. Accordingly, we intro-
duce two- and three-dimensional transforms of ¢:

2.2)

(k1) = Qm)~® J dx ~ %)
x explik-(x — x)dx — x', 1), (2.3)

$(K|2) = (2m)? J exp(iK - p)b(p,2)dp

- f " exp(—ik,2)bR)dk,.

(2.9

Here x = (p,z), k = (k;,k,,k;), and K = (k,k,).
Our notation is such that the arguments of ¢ specify
the dimensionality of the transform. Inverting (2.4)
yields

L]

o) = 2m)™! J exp(ik,z)¢(K |z)dz. (2.5)

-

We shall, for simplicity, assume horizontal isotropy
so that ¢(k) may be written as

o) = (k) = 3 Du(k)Pulp), (2.6)
0

where u is the polar angle and P, are Legendre func-

tions. It is convenient to define a ¢-based vertical

(correlation) length scale L by

o©

Ly(K,1) = J z &(K |2)/$(K | 0).

—00

In terms of the angular distribution (2.6), we have

LK) = (2n)¢(K,0)U°° dk, <I>(k,p«)]— @

If Lo(K,t) increases with ¢, the flow becomes more
barotropic at wavenumber K. Note that as Ly, — o,
M(k,u) = 8(p), according to (2.5).

It is also convenient to have gross measures of
baroclinicity and barotropy of the flow. For this
purpose, we introduce total integral scales in the
vertical and horizontal:
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Lu@) = | (1ot + 1)) dgr (')
=j ) deIb(0), (2.82)
L) = [ (LUx + kO)AEN LX)
: [ $(kg)de/$(0), (2.8b)

where i and k are unit vectors in the x and z direc-
tions. Using (2.4)-(2.7)

°Qdkk k) — (172 ky+ ---
LV@):L (oK) — (12)ba(k) + ++ -}

Ly(¢) J -

, (2.8¢)
dick{po(k) + (1/4)o(k) + - -}

where the series (2.6) is terminated at second order.
We have here computed length scales pertaining to
the vorticity covariance ¢, but could just as easily
have computed them with respect to the streamfunc-
tion y and its covariance ¥. We denoted the latter by
Ly(¥V), L(¥) and Ly(k), using (2.7) or (2.8)
with ¢ - P,

b. Statistical theory

We now introduce the expansion (2.6) into the
statistical-moment equations corresponding to (2.1)
and obtain equations of motion for ¢,(k). We employ
here a variant of the simple quasi-normal eddy-
damped theory (EQN). This simple procedure ap-
pears to capture the essential physics of the prob-
lem, while a more elaborate theory——such as the
ALHDI? (Kraichnan and Herring, 1978)—appears
prohibitively complex. Our present procedure cor-
responds to the TFM algorithm, in which only the
isotropic parts of the relaxation rates are retained.

It is convenient to emplay the total energy U(k)
= ¢(k)/k%* as the basic dynamical variable. This
quantity is related to the kinetic energy spectrum
V(k) by

(|v(®)|?) = V(k) = sin?0 U(k), u = cosé.

The equations of motion for its Legendre representa-
tives U, [see Eq. (2.6)] are (see the Appendix for
derivation)

Uy = T¥(Uo, Uy) — (USITH(U,,U,) + THU,,Uy)l
. +Tk(U2,U2)+ T, (2-9)
Uz = _Tk(Uo,Uo) + R(U,,U,)

- (UDTHU,,Uy) + ---. (2.10)

2 Abridged Lagrangian history direct interaction.
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Here
T*U,,Uy)
- J dpdq Bing O U@ Ux(p) — UyK)], (2.11)
THU,,Uy) = (1/70) j dpdq By BrpeUn(@)
A
x {(1 + 9x)Uy(p) — (1 + HHU,K)}, (2.12)

R¥U,,U,) = (1/14)J dpdq 0,5,Ux(q)(1 + 9y%)

A

X {(Bkpg + qup)Uo(P) = By Uo(K)}

— 6 J dpdg BupaBrwa U Un(q), (2.13)

Bpq = (4u/3)(pq/k¥)(p* — q%)

X (k2 — g1 — x?). (2.14)
In these expressions (x,y,z) are interior angles in tri-
angle (k,p,q) and 8,,, are the triple moment relaxa-
tion rates, for which we employ the prescription
recommended by Pouquet er al. (1975)

K 12 »
Oy = [J k"dk"E(k')} + [J D
o

1/2
I2deE(pl)}

q 1/2
+H q”dq'E(q')] . @15)

Details of the angular expansion are set out in the
Appendix.

To gain some insight into these equations, we
consider an initial value problem for which U, is the
thermal equilibrium spectrum, 1/(a + bk?), and U,
= 0. Then U, = U, = 0, and the flow remains (three-
dimensionally) isotropic. Further, if U, = 0 and
U, is an inertial range spectrum 1/k* [so that E(k)
= 27k2U(k) « k3], again, U, = U, = 0. However,
if U, departs from either inviscid equipartition or
inertial range (as it must at small k), then U, # 0
and according to (2.10) has the opposite sign from
T(U,,U,). Hence at small k, where T > 0, the flow
becomes barotropic (L(K) > 0) [see Eq. (2.7)] and
at larger k, where T(U,, U,) = 0, the flow becomes
more baroclinic (L(k) < 0). After U, has developed
to a finite value, the R*(U,,U,) term acts to restore
isotropy. This term is formally similar to the return
rate in strictly two-dimensional turbulence (Herring,
1975), the last term in (2.13) acting as an eddy-
damping rate. However, for strictly two-dimensional
flows we may show that

© k+p
j dp J dgBE,Uy(q) >
[} |k—p|
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witn _
BRq = Q/k*)(P* ~ ¢*)(k* — g*)(1 — x*)'2.

However, for the present problem, the counterpart
to the above integral [using Eq. (2.11)] becomes nega-
tive at small k. This leads to a destabilization of the
small k regnon and, since there the flow becomes
initially barotropic, the implication is that the baro-
tropization will proceed indefinitely unless limited by
-the nonlinear terms in (2.10). We shall return pres-
ently to a more thorough discussion of this point after
developing some ana]ytnc approximations valid for
smiall k.
We now give the results of some asymptotlc
analy31s which supports these assertions. This is
done by evaluating the transfer functions in (2.9)~

(2.11) for k very much smaller (or larger) than the

energy- contamlng wavenumber. For large k, we
obtain -

THU,, Us) = (8/45) f pAU(p)dpk—3(Brerk*)

x (k*Uk)/ok)lok + -+, (2.16)

RMUs,Us) = (136/105)(m/21) jp‘*dpuz(p)okk,

" x {82(k2U«(k))/dk? + (32/17)k‘16(k2U0(k))/ak}
+ - = (INMu(k)Uy(k), (2.17)
where

w(k) = j BuoadpdaOod@)Usq),  (2.18)

with B, is given by (2. 14). These are asymptctic
expansions in which (p/k)* is the small expansion
paramieter [see Pouquet et al. (1975) and Herring
(1975) for more complete details). They are plausible
for the mertnal range and the beginning of the dis-
sipation range but inappropriate for the far dissipa-
tion range. We note that (2.16)— (2 17) are consistent
with Ug(k) ~ k=3, Uy(k) =0 in that if U, =0,
T"(k 5k =0+ - Heuristic inertial range
arguments [applied to Eq. (2.16)] may further be
used to establish E(k) ~ k~3[In(k)]~"3, similar to re-
sults obtained for two-dimensional turbulence by
Kralchnan (1971). Eq. (2.17) gives the large k return-
to-isotropy behavior. The first term here gives the
production of anisotropy stemming from the strain-
ing of an isotropic field, Uy(k), by large-scale (rms)
strain ([ dpp*U,(p)}¥?. This term is zero for the
1nV1sc1d equxpanxtlon solution Uy(k) = k~2. The last
term in (2:17) is the familiar eddy-drain term, which
damps anisotropy due to the turbulent seif-inter-
action. A more careful examination of this type of
equatlon (see Herring, 1975) shows that the eddy-
drain term is nearly canceled by positive produc—
tion terms for which (p/k) = 1 and which expansion
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(2.17) omits. This cancellation effectively reduces
the value of the eddy-drain term to the level of the
eddy circulation time (% p2E(p)dp)*".

At small k, (2.9)-(2.11) become

o0

THUo, Us) — (32m/4S)k? j Pdp(Uo(P)*Bips

0

0

+ (16m/45)k2U (k) J

0

pWpUy(P)bipp + *+*» (2.19)

R¥U,,U,) —>

(1108:/2205) k2 J p2dpUs(0) Un(p)Brpw

0

-]

— (3044/2205)k2U o(k) J p*dpUs(p)ipp

0

+ (80m/315)k2U(k)

x | papUsp)Oy + o (220
[ . .

The first term in (2.19) leads to E(k) = k%, if the

initial data have E(k,0) =0, a point explonted

recently by ‘Lesieur and Schertzer (1978) in their

study of the decay law for isotropic turbulence. The

- second term in (2.19) is a negative eddy viscosity.

Its physics is. somewhat different than that of two-
dimensional, isotropic turbuience. In the latter case,
arguments introduced by Kraichnan (1976) may be
used to show that negative eddy viscosity can and
does occur only if a low wavenumber cutoff is intro-
duced. In the present problem, however, there is no
cutoff. The return-to-isotropy term (2.20) has a
similar negative eddy visco‘sity term, but its effect
is masked by other terms in (2.20). '

The above discussion of energy transfer at low
wavenumber suggests that it has the elements of an

. instability. Thus, if (2.19) approx1mates the energy

transfer at small k and the equation for U, also con-
tains an energy input, we expect Uy(k) — . This
would not necessarily be the case for two-dimen-
sional turbulence for which the positive eddy viscos-
ity limits the buildup of energy at k& near 0.

However, the above argument neglects the pos-
sible effects on T*(U,, U,) of the increasing baro-
tropicity of the energy-containing region. Note that
according to (2.19) and (2.20), Uz(k) at small k be-
comes negative and hence, according to (2.8), the
flow tends toward two-dimensionality. Since we
know that the eddy viscosity is positive for two
dimensions (excluding a low wavenumber cutoff),
we may conclude that this instability is quenched
before the flow becomes fully barotropic. The-
quenching effects are, of course, contained in the
higher harmonics [e.g., T%(Uz, U2)l, Wthh we have
not discussed.
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3. Some numerical results

To illustrate the discussion of the last section, we
consider some numerical calculations of (2.9)—
(2.13). We solve these equations on a wavenumber
span (0 < k =< 200) and apply a biharmonic viscous
dissipation to damp out high-wavenumber enstrophy.
Its form is

v(k)

_P, ksm,on
10(k2 — 1502)%/(200% — 150%)2, k =150.

Numerical experimentation showed that if (3.1) is
applied to an energy spectrum, normalized to unity
and with peak wavenumber near k = 2, then (3.1)
was sufficient to prevent ar appreciable damming-
up of enstrophy near & = 200. At the same time,
the dissipation is sufficiently weak so that a k=3
inertial range developed and extended over (10 < &
< 100). We examine three initial value problems
consisting of .

Uy(k,0) = Ak?/(ky” + k7) = F(k),

Us(k,0) = 0, (3.2a)
Uy(k,0) = F(k), Uy(k,0) = F(k),  (3.2b)
Uy(k,0) = F(k), Uy(k,0) = ~F(k). (3.2¢)

Here, k, = 2, A = Tky? sin(5#/7)/27%). At large k,
Egs. (3.2a)-(3.2¢) developed smoothly into a dis-
sipation range, while at small k-—where little energy
resides initially—they developed into profiles pro-
duced by dynamics, rather than as fossils of initial
conditions. We note in this connection that (2.19)
implies that if Uy(k,0) increases less steeply than 2,
then Ugy(k,t) and U,(k,t) will simply retain their
initial shapes for a substantial time. If, however,
U(k,0) increases as k2, then the subsequent develop-
ment of U(k,?) is controlled by the inverse cascade
and U(k) = k? as k — 0. We examine the develop-
ment of (3.2a) in some detail and present results
for (3.2b) and (3.2¢) only in summary form.

Fig. 1 gives the kinetic energy for spectrum (2.3a)
(solid line) and twice the potential energy (dashed
line) at¢ = 6.0—about six, large-scale eddy circula-
tion times. For complete isotropy, these quantities
are equal. The dotted line is the initial kinetic energy.
We note that by ¢ = 6, the energy spectrum has
shifted significantly toward larger scales, while at the
same time maintaining approximately its initial
shape. At wavenumbers smaller than the peak energy
wavenumber k.. the flow is significantly deficient
in potential energy, while at k larger than k.« a
slight excess of potential energy is observed. The
precise degree of anisotropy is better observed in
Fig. 2a, which gives the ratio p of potential to total
energy:

p(k) = Y[l + FsUy(k)U (k)]
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Fic. 1. Energ); spectra for initial condition (3.2a). Solid
line, kinetic energy at ¢+ = 6.0; dashed line, three halves the
potential energy, ¢ = 6.0; dotted line, kinetic energy at¢ = 0.

as a function of k [here the initial spectrum (3.2a)
is the solid line]. Fig. 2b gives the energy transfer
functions for comparison, as given by the right-hand
sides of (2.9) and (2.10) [for casé (3.2a) only]. Fig. 2a
indicates a fairly sharp front separating the region of
strong barotropic flow (p < %) from baroclinic flow
(p > 15). At small k (k < 1.0), the angular distribu-
tion of U(k, t = 6) is essentially ~sin®g, and the
angular harmonic expansion (2.6) needs more terms
for accuracy (n > 2). The region just beyond kpax
appears most strongly baroclinic, with a very slowly
decaying anisotropy throughout the inertial range.
The region k = 10° may be viewed as the dissipation
range, where the biharmonic viscosity begins to af-
fect seriously the shape of the spectra. It is strongly
barotropic but this feature is clearly dependent on
our representation of dissipation as isotropic in
stretched z coordinates [see Eq. (3.1)]. Here we are
relying on the Reynolds-number independence of
the large scales (Herring et al., 1974) to argue that
inertial range results are independent of details of
the dissipation range, at least at large Reynolds
numbers. Fig. 2b indicates that the energy back
transfer region is strongly two-dimensional. ‘The
shape of T,(k) is typical of two-dimensional turbu-
lence. Also shown in Fig. 2a are p(k) for initial
spectrum (3.2b) (the dashed line), and for (3.2c) (the
dotted line). The figure suggests that all three initial
spectra tend toward the same universal shape. -
Fig. 3 depicts the spectral length-scales L(K) for
streamfunction and vorticity spectra, as given by
Eq. (2.7), and as normalized by the appropriate total
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F1G. 2. Ratio of potential to kinetic energy, p(k,t = 6.0),
Eq. (2a), ard total eriergy transfer functions at ¢ = 6.0, Eq.
(2b). Fig. 2a shows p for the three initial conditions: Eq. (3.2a),
solid line; Eq. (3:2b), dashed line; and Eq. (3.2c), dotted line.
Fig. 2b is for initial conditions (3.2a) only. Curves are
T(k) = 27k? times right-hand side of (2.9) (solid line) and (2.10)
(dotted line).

vértical length scale L,(¢) [Eq. (2.8b)]. Shown here
are only results for Eq. (3.2a). We note that the
vorticity length-scale distribution shifts; self-simi-
larly, back to smaller k, whereas the streamfunction
length scale exhibits rapid growth for k smaller than
kmax. As remarked earlier, our truncated P, expan-
sion (n =< 2) becomes suspect at smaller k fort = 6.
Fmally, Fig. 4 shows the track of L;(?); Ly(1) for
both streamfiinction and vorticity as a function of
time, with the ticks indicating time segments dt
= 0.5. All three initial conditions [Egs. (3.2a)-
(3 2¢)] are shown. The general increase of these
lengths as a function of time is typical of decaying
turbulence. However, we note that the vorticity
trajectory remains more nearly three-dimensional
(running more nearly parallel to the line Ly = Lg)
than that for the streamfunction. The degree of two-
dimensionality may be judged by the asymptotic
angle of the y-based Ly, L, tracks. Totally two-
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dimensional flow would have a vertical track, while
for three-dimensional flow the ¢ track would run
at 45°. The asymptotic i tracks appear to be only
slightly more obtuse than the initial conditions
(3.2¢) [U(k) « sin?6] would indicate. Note, how-
ever, that according to Fig. 2a this flow becomes
strongly three-dimensional at larger k. The d¢-
based Ly, Ly tracks appear more three-dimensional
but also appear to tend toward two-dimensionality.
This is clearly a result of large negative values of p
(see Fig. 2a) at small k weighing more than the
rather small positive values at larger k. Had L been
computed for V3¢, a more nearly 45° track would

" undoubtedly have been found.

A prolate spectrum such as Eq. (3.2b) represents
a flow field with excessive vertical variation and,
irt the limit U(k,u) = 8(1 — w), the nonlinear inter-
actions vanish. It therefore represents a pathological
exact solution and it is of some interest to know
whether the flow exhibits any tendency to seek it
out. Our calculations here—as is indicated in Figs.
2a and 4b—indicate that it does not. Less severe,
nonsingular, prolate initial conditions are the
statistical analogue of a baroclinically unstable state.
The oblate initial conditions, on the other hand,
represent near two-dimensional states, and the
extreme limit U(k,0) = 8(u) is simply two-dimen-
sional turbulence. The stability of this singular state
has not (to our knowledge) been explored via
statistical theory.

The instability of the prolate initial conditions
found here may be understood from an examination
of Egs. (2.9) and (2.10) without numerical integra-

BLELLLRARL T URLLL LALLM | T T I

—~

-

103

Fic. 3. Two-dimensional vertical correlation length-scale
distributions, L(K) [see Eq. (2.7)] for both streamfunction (¥)
and vorticity spectra ®. Curves are labeled by evolutions
time 7. Only initial spectrum (3.2a) is shown.
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tion. Thus the first term on the right-hand side of
(2.10) indicates that, in the inverse cascade region,
U(k) tends toward oblateness regardless of the sign
of U,, since the return-to-isotropy terms are weaker
than the first term at small k. On the other hand, at
large k, the return to isotropy is the larger term,
since U(Kk) is, or quickly becomes, inertial so that
the first term nearly vanishes.

4. Concluding comments

The present calculations for homogeneous quasi-
geostrophic flow show a rather clear tendency for
the small scales to seek three-dimensional isotropy
in the stretched coordinate frame. At the same time,
the rate of isotropization is weak, characteristic of
two-dimensional turbulence rather than three. This
weak relaxation toward isotropy arises from the
rather steep £~3 spectrum, for which the eddy circu-
lation rates are nearly independent of k. Conse-
quently, the rate of approach is no larger at small
scales than at large scales. We view this tendency
toward small-scale isotropy as a manifestation of
the flow to seek three-dimensional equipartition.
At large scales, on the contrary, the flow is strongly
two-dimensional in that for initial value problems
the total energy spectrum (without forcing) tends
toward ~sin?@, where @ is the polar angle. This
qualitative tendency would be expected from a naive
consideration of the horizontal convection of geo-
strophic vorticity, i.e., simply stepping the homoge-
neous version of the equations of motion forward in
time a couple of steps and ensemble averaging. The
dividing wavenumber between the near-two-dimen-
sional and near-three-dimensional flow occurs in
self-similar decay near the energy peak wavenum-
ber kpax. The transition is rather abrupt, and scales
somewhat smaller than k., characteristically pick
up a baroclinic character.

The present study may be compared to layered
calculations, particularly the statistical treatment of
a two-layered system developed by Salmon (1978),
and the earlier thermal equilibrium study by Salmon
et al. (1977). These studies differ from the present
in that their subject constitutes an inhomogeneous
system on the vertical wavenumber lattice k,
= (0, +k,), and the continuous horizontal wave-
number spectrum K. The presence of other k.’s
< ko are excluded by boundary conditions, and
those >k, are discarded for computational rea-
sons, although such a two-layer model can be realized
in the laboratory. The earlier study by Salmon
et al. concluded that, in thermodynamic equilibrium,
scales larger than the Rossby radius of deforma-
tion (f%,/g’)V? were essentially two-dimensional,
whereas smaller scales were mixed barotropic-
baroclinic. Perhaps these equilibrium results may
be interpreted from the present perspective by
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FiG. 4. Evolution of total integral scale length vector, L
= (Ly,Ly) [see Egs. (2.8a) and (2.8b)). Streamfunction L is
shown in (a) and vorticity based L in (b). Labels a, b and ¢ per-
tain to the three initial conditions (3.2a), (3.2b) and (3.2¢).

saying that the flow has become as nearly three-
dimensionally isotropic as the geometrical con-
straints and modal representation would allow.
Thus the only way of representing vertical correla-
tions larger than the Rossby radius is to have the
flow completely two dimensional.

When we turn from thermal equilibrium to dissi-
pative flows, we encounter dynamical reasons for a
near two-dimensionality of large scales, which have

‘nothing to do with considerations involving the

Rossby radius or other geometrical considerations.
Thus our correlation length scales are intrinsic to
the initial spectrum only. If small-scale turbulence
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were to be introduced in a layer, we would predict
that vertical correlation lengths would tend to grow
more rapidly than the normal shift toward large
scales, and a virtual large-scale, two-dimensional
flow would be reached even if there were no
boundaries. Once the vertical length scale exceeds
the depth of the fluid, vertical degrees of motion
would be progressively eliminated, but the small
scales would persist in their three-dimensionality.

The present work is closely related to the two-
layer study by Salmon (1978), who considered a
two-layer model whose energy spectra are equal,
a condition roughly approximating the homogeneity
of the present study. Salmon developed the view —
using the statistical closures as well as numerical
simulations —that the dynamics tend to isotropize
the energy among the available wavenumbers,
K, K + k,. More precisely, he decomposed the
motion into barotropic and baroclinic modes—a
decomposition roughly equivalent to the present into
kinetic and potential energy except, of course, for
the differences in wavenumber representation. De-
noting the baroclinic modal energy by E(K) and
the barotropic by U(K), Salmon observed that for
thermal equilibrium, E[(K? + Kz»)V?] = U(K),
where Ky is the Rossby radius of deformation. In
the present study, K; = 0, but a similar shifted
spectrum hypothesis, viz., P(ak) = a—2U(k), where
P(k) is the potential energy spectrum and a = 577,
does account roughly for the shape of the self-
similar spectrum found here.
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APPENDIX
Derivation of Equations of Motion for U, (k)

Here we give the steps that lead to Egs. (2.9)-
(2.13), the angular harmonic expansions for the
equations of motion for the modal total energy
spectrum U(k,t) = k~2¢(k,t). We start by introduc-
ing the wavenumber decomposition of (2.1), i.e.,

=V = {(x,0) = X exp(ik-x)§(r), (A
k

tk(t) = 2 Ekpqépéqs

k=p+q

(A2)
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TABLE 1. Geometrical coefficients for TFM.

nml b nml

Apmi

000 1 1

002 —Ys —s

020 —1s YA

022 (1 + 9%%/70 (1 + 9%/70
200 . -1 -1

202 (1 + 9y?/14 (1 + 9y%/14
220 (1 + 9z2%)/14 %/

222 =1 =

where
Expq = (12)(p72 = q7*)(p X @)'n

and n is a vertical unit vector. Notice that (A2) is
formally the same as for two-dimensional turbulence,
but (k,p,q) are three- rather than two-dimensional
vectors. The eddy-damped Markovian equations
for U(k,t) are

Uk,t)
- [t?(k,p,q)dpw(p) U(@) - URU@]Ome (A3)

where
dp = pidp sinb,do,d¢,,

q=k—p,
B(k,p,q) = 2(kpq sind sine, siny)?
X(p2—qg k2 —-qg™).

Here, 0 is the k polar angle, with respect to n, and
the polar axis of p is chosen to be k, with ¢, the
azimuthal p angle. +y is the interior angle between
k and p. We now assume that U(k) is axisymmetric.
Then to effect the dp = p2dp sind,d6,d ¢, integral
in (A3) we need only (n'p)p = u, and (n-q)lg
= u,. These are

p = COSY c0sf — cose, siny sind,
e = cosB cosf + cosed, sing sind.

We have taken k in the (x — z) plane and assumed
that ¢ = 0 occurs for the triangle (k,p,q) in the
(x — z) plane. These restrictions are valid in view of
the assumed axisymmetry. It remains to introduce
the spherical harmonic expansion (2.6) into (A3)
and to effect the integrals. The result may be
written in the form

Un(k’t) = 2

m,l

J dpdqB(k,p , @) armUn(P)ULq)
A

- bnml Um(k) U:(Q)]- (A4)

The coefficients a,,,; and b,, are appropriately
weighted integrals of the P,’s and are listed for the
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first few (n,m,l) in Table 1. B,,, is given by (2.14).
In going from (A3) to (Ad), we have eliminated
6, in favor of ¢ = |k — p|.
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